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1.  Introduction

1.1 Purpose

During the EOSDIS era, there will be significant volumes of data generated, transmitted, and
managed on a daily basis. Data compression is one tool that can be used to overcome the problems
encountered with data transmission, storage, and dissemination of such large volumes of data.
This paper will give an overview of the current (Version 0) use of data compression at the DAAC
sites and give a justification for the current methods of data compression. The paper will continue
with an explanation of current data compression techniques in industry, and the paper will begin to
give recommendations and justifications for possible data compression techniques for the ECS
data sets.  The paper concludes with recommendations for future studies.

1.2 Organization

This paper is organized as follows:

• Section 1 presents the purpose of the document and its organization.

• Section 2 gives an overview of data compression.

• Section 3 presents the current (Version 0) implementation of compression at the DAAC
sites, the effectiveness,  and gives a justification for the compression decisions that were
made.

• Section 4 explains the current and future compression techniques of data compression in
industry.

• Section 5 relates data compression to the various ECS data sets and gives
recommendations and justifications for data compression of the ECS data sets based the
current conception of the ECS architecture.

• Section 6 gives early conclusions of compression effectiveness on ECS data.

1.3 Review and Approval

This White Paper is an informal document approved at the Office Manager level. It does not
require formal Government review or approval; however, it is submitted with the intent that review
and comments will be forthcoming.

This version of the white paper will serve as input to the architecture team to support decision
making for the SDR time frame.  This white paper will be updated as more information about the
data sets, the architecture, and compression techniques become available.

Questions regarding technical information contained within this Paper should be addressed to the
following ECS contacts:

o ECS Contacts

– Howard Feil, System Engineer, (301)-925-0663, hfeil@eos.hitc.com
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Questions concerning distribution or control of this document should be addressed to:

Data Management Office
The ECS Project Office
Hughes Applied Information Systems, Inc.
1616A McCormick Dr.
Landover, MD 20785
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2. Compression Overview & Issues

2.1 What is Data Compression (Pros & Cons)

[Excerpts from "Data Compression as a Viable Tool", Loral Aerosys]

The term data compression refers to the process of transforming a body of data (text, code, image,
etc...) to a smaller representation of that same data, from which the original data stream, or some
approximation of it, can be computed at a later time.  Effective algorithms for data compression
have been known since the early 1950's. There has traditionally been a trade-off between the
benefits of employing data compression versus the computational costs incurred to perform the
encoding and subsequent decoding.  The advent of high-speed microprocessors and VLSI chip-
sets has made data compression a standard component for use in communications, video and data
storage systems for the commercial market.

2.2 Lossy and Lossless Compression

There are two general types of data compression; "Lossy" and "Lossless".  As the name implies,
lossy data compression is a process where the transformation is irreversible in the sense of being
able to completely recover the data as it originally existed.  Lossy coding techniques arrive at a low
bit rate by exploiting certain shortcomings in the human visual system, or by tolerating a degree or
image distortion.  As unacceptable as lossy compression technique may seem to many
applications, it is still worthy of consideration since it does not necessarily destroy relevant
information.  In fact, techniques that are carefully chosen may actually increase the net return of
information from the original data by enabling an increase in accuracy or temporal coverage as in
the example of scientific data.  Furthermore, lossy data compression could be ideal for browse
and/or quick look applications.

Lossless data compression may be viewed as a special case of lossy compression, although in
practice the techniques differ greatly.  Lossless data compression is defined as the process where a
transformation is fully reversible and there is no other "noise" or other artifact introduced into the
original data stream.

Although data compression has many applications, the two most common areas are a) Data
storage; and b) Data communications (see Figure 2-1). Data compression is by its very nature
application dependent.  There will not be a single solution or standard algorithm that could be
recommended for all applications.
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Figure 2-1 -- Data Compression Block Diagram
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2.3 Data Compression Issues

In any data compression situations, there are several practical issues that play a very a important
role in the choice of the compression algorithm to be used for the given circumstances, namely,

2.4 Compression efficiency

Compression efficiency is defined as the amount of bit rate reduction for a prescribed level of
fidelity. Generally speaking, the compression ratio offered by lossless technique are highly data
dependent. The same algorithm may have compression ratio in the area of 1.6:1 to 3:1 for 8 bits
pictorial images. Compression rates for 12bit radiological images approaches 3:1. The
compression ratio could be as high as 10:1 to 30:1 for documentation type of image, such as
CCITT Group 4 algorithm. Arrays of floating point numbers look like white noise to most data
compression schemes and compress rather poorly. Source code can normally be compressed by
factors of two, but object code with its arbitrary bit patterns, does not compress well at all.
FORTRAN compiled code compresses approximately 50 percent.

Lossy data compression, on the other hand, can achieve compression ratio from 8:1 to as high as
200:1. The compression ratio is usually fixed for a particular algorithm. However, different
algorithms are usually needed for different data type and/or application. Typically, visual
appearance and Signal to noise (SNR) ratios are used to measure the deviation of lossy data
compression. However, additional processing stages after data compression could be critical for
ECS browse application.
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2.5 Complexity of Implementation

Data compression algorithms usually involve enormous number of multiplications, additions and
comparisons per input sample. It is always a tough tradeoff between hardware or software
implementation based on cost, performance and different type of applications. The ability to put
significant processing power on a single chip makes sophisticated data compression algorithms
truly practical. Another issue is the tradeoff between COTS, which usually complies to standards
(e.g., JPEG, MPEG, CCITT, etc.), and custom implementation. In addition, a tradeoff analysis
should be performed to decide where the data compression should be applied. For example:
whether data compression should be performed at the host level or at the workstation and/or
different storage level; whether data compression should be performed at different stage of
processing data.

Furthermore, if data compression is executed in the CPU, it would be made available to application
software and would be a main memory to main memory operation. This type of compression
would improve I/0 channel utilization but would also increase the main memory cycles required. If
invoked optionally by an application, this type of compression would not necessarily require
changes to the operating system. If compression is executed in the I/0 channel, it would be visible
to the operating system software and would require full message buffering in the channel
controller, and the operating system would issue separate operations for compression and I/0
transfer, giving it a chance to see the size of the compressed data before it transfers the data to a
device. Because of data storage requirements, this approach would probably only be useful on
select channels. It does allow the device bus transfer rate to be better utilized only because
compressed data moves from the I/0 channel to the device directly, but it also complicates the I/0
channel and operating system software design.

2.6 Implementation Delay

The implementation delay is the time required to encode and decode the data. Depending on the
algorithms and implementation schemes, two modes of operations exist; e.g., on line and off line.
An on line algorithm is real time if there exists a constant k (which does not depend on the data
being processed) such that for every k units of time, exactly one new character is read by the
encoder and exactly one character is written by the decoder. The only exception to this rule is that
we may allow a small 'lag' between the encoder and decoder. What distinguishes this mode from
an off line model is that neither the sender or the receiver can see all of the data at once; data must
be constantly passing from the sender through the encoder, through the decoder, and on to the
receiver. An off line model, on the contrary, is non real time. Depending on the application and
data rate, one should decide whether to use on line or off line mode. For example, communication
application usually requires on line mode, while storage applications may use both modes
depending on other factors (e.g., costs, performance, etc.).

2.7 Sensitivity to channel (transmission and/or storage) error.

An important feature of any data compression scheme is its sensitivity to transmission and/or
storage errors. Typically, more efficient data compression algorithms are more sensitive to channel
errors; in many cases, one channel error could propagate over a large number of data samples,
corrupting a large portion of compressed data and resulting in excessively large distortions. This
nets out to the fact that a given error rate may be acceptable for the transmission or storage of
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uncompressed data, but the same rate may prove to be unacceptable for compressed data. Error
correction coding will not alleviate this problem in most cases, as the check bytes appended to the
data stream would be removed as redundant information during the encoding process. This is one
of the most difficult problem for data compression implementation, and usually takes specific
techniques to address this problem. Extensive simulation runs and/or prototype system are needed
to analyze this problem.

2.8 Robustness with respect to different data streams

Typically, data compression algorithm works better for a particular type of data source. Clearly text
data (e.g., EOS Metadata) is quite different from the so called digitally sampled analog data such
as speech, music, black and white or color video, raw and satellite imaging and non imaging data.
Therefore, we need to use different data compression algorithms for different types of data. For
lossy data compression, specific application in addition to data types could also play a major role to
determine the data compression algorithms.

2.9 Application Impact

Each compression strategy poses a different set of problems and, consequently, the use of each
strategy is restricted to applications where its inherent weaknesses present no critical problems.

2.9.1 Processing and retrieval impact

For lossy data compression, visual appearance and SNR are usually used to measure the distortion
of the uncompressed data. However, additional processing could be important for certain
applications. For example, tradeoff between radiometric (intensity) and geometric (spatial)
distortion are important for Synthetic Aperture Radar (SAR) data.

Another potential problem is the application for data subsetting based on predefined criteria. This is
especially true for lossless data compression due to the variable length block size. The utilization of
special indexing schemes is one way to provide this capability.

2.9.2 Computer system integration impact

Several problems are encountered when common compression methods are integrated into
computer systems, and this has prevented the widespread use of automatic data compression. For
example; (1) poor runtime execution speed interferes in the attainment of very high data rates; (2)
most compression techniques are not flexible enough to process different types of redundancy; and
(3) blocks of compressed data that have unpredictable lengths present a storage space management
problem.

When using data compression on peripherals, a significant system consideration occurs in
deciding where to implement compression in the I/0 path. The compression operation inherently
requires some buffering because of its rate of outputting compressed data varies widely, depending
upon instantaneous compression ratios. Another potential problem is channel bandwidth. If data is
compressed by a factor of 3.0:1, and data is being sent to a 4 MB/s device, then the channel must
deliver a minimum of 12 MB/s. This peak rate requirement is variable depending upon
compression ratio, so I/0 channel sizing cannot be calculated directly from device transfer rate
alone.



Working Paper 7 194-00316TPW

Compression of information within magnetic and optical disks is practical because the internal data
format on disk is generally invisible to the user and can therefore be altered to accommodate data
compression. Traditionally, the operating system directly controls space allocation on the disk by
keeping a map of the available space and checking each new write request against this mapping to
determine when and where space is available. If compression is used in a mode transparent to the
operating system, this direct control is no longer possible. To alleviate this problem, the space
allocation task is moved to the disk controller.

Data compression within magnetic tape drives is well suited because space allocation is not
normally involved, and data block sizes are large. The only problem that must be dealt with is that
of reading backwards. Adaptive compression schemes are traditionally a one way procedure, so
reversed data blocks must be stored before decompression can begin. This is a problem in
start/stop mode drives versus streaming type.

2.9.3 Communication application impact

Data compression techniques that are employed to conserve communications link data must
consider the intended used of the data. The user of these techniques must have the option to
allocate bits to best satisfy his objective over a reasonable range of selectable options (e.g., to
allocate bits in a trade off between bandwidth covered vs. quantization level). In addition, there are
some general benefits to be gained from data compression in this application. Some forms of
compression may perform initial steps of the final processing stream, such as in the case of
Transform Coding which reduces noise artifacts prior to other processing.

Communication links pose special problems because they are traditionally noisy and increase the
capacity of 'garbled data' in the decompression process along with the fact that methods employed
to overcome this problem are typically error correction. As stated earlier, the redundancy found in
most ECC approaches is eliminated as redundant data in the compression process. This
phenomena is not found in forward error correction techniques.
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3.  V0 Analysis

3.1 V0 Standard Product Compression Methods

In this paper, standard products are any product which require lossless storage.  Typical standard
products are level 0 through level 4 products from the data pyramid.

3.1.1 Current Methods

Table 3-1 gives a summary of the compression being used at the DAAC sites.  GSFC and MSFC
are the only two DAACs that report most of their data is being compressed.  LaRC and NSIDC
also reported that a small portion of their data is being compressed.  GSFC, MSFC, and LaRC
reported that they were using UNIX compress (a lossless compression technique) and were
achieving an average compression ratio of about 2:1 across the data they were compressing.
NSIDC said they were using GNUZip (a lossless compression technique) on a small portion of
their data because they found it to be a little better then UNIX compress.

The DAAC sites using compression consider the CPU time to compress the data negligible, and
most offered to distribute the data in a compressed or uncompressed format.  The DAAC sites
encourage distribution of data in the same format as it was stored in on the DAAC sites.

No DAAC site reported complaints or problems with their current compression or storage
techniques.

Table 3-1, V0 System Compression
Location Standard Product Distribution Browse Product Dist. of Browse

ASF - Fairbanks,
AK

With the exception of
one Level 2 product
which is being
compressed with run
length encoding
(RLE), no
compression is being
used at ASF.

N/A N/A Hard Copy File
Folder

EDC - Sioux falls,
SD

No compression is
used on standard
products.

Compression
Option.  The user
has the option of
selecting a switch
in the IMS toolbox
which will
compress files on
their local
workstation using
a home grown
algorithm called
Encode 76.

Granules are
decimated and then
stored using the
JPEG standard
DCT.  Browse
products are visually
lossless with a
quality factor of 30
yielding a
compression ratio of
10:1.

Individual
granules are
fetched and put
together by the
IMS into an HDF
format before
distribution to the
user.  In the
future will store
browse images in
an HDF format.
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GSFC -
Greenbelt, MD

Some products are
compressed using
UNIX Compress.  Data
that was found to be
compressible is
compressed (AVHRR,
TOVS3, CZCS), and
data that was found
not to be
compressible was left
uncompressed
(UARS).

Encouraged to
receive in
compressed
format.  In
general, data is
distributed in the
same format that
it is stored in.

Browse products
compressed using
UNIX compress.

Viewed with a
browsing tool.

JPL - Pasadena,
CA

No, the current
volumes are not
enough to justify using
compression.

N/A No compression
used on browse
products.

Viewed with a
browsing tool.

LaRC - Langley,
VA

UNIX Compression is
being applied to Level
0 and Ephemeris data
only.

Level 0 and
Ephemeris data
not available to
clients. Available
products are not
compressed.

Browse products
are stored in and
HDF format with the
JPEG compression
applied to the
granules.
Compressed 9:1.

Viewed using a
HDF utility
developed at
NCSA.

MSFC -
Huntsville, AL

Most data sets are
compressed with UNIX
Compressed.

User can get
compressed or
uncompressed
data for most
data sets.  Large
granules only
distributed in a
compressed
format.

No compression
used on browse
products.

N/A

NSIDC - Denver,
CO

GNU Zip used only for
SSM/I and TOVS3
data set.

Not distributed in
a compressed
format because of
the burden it
places on the end
user.

No compression
used on browse
products.

N/A

3.1.2 Decision factors

UNIX compress utilizes the Lempel-Ziv-Welch (LZW) algorithm for compression (See Section
4.2.5 for further discussion of the LZW the algorithm.) The same algorithm is used in the and the
VMS compression utility. The major reason UNIX compressed was used at the DAAC sites
using compression was he popularity and portability of UNIX compress. The compress algorithm
is available on almost all UNIX, VMS platforms, and is even available on PCs. Although UNIX
compress does not get a top compression ratio in most cases, there is no other compression
algorithm that will always be better. There are compression algorithms which are better then
UNIX compress most of the time on image data, but these are not readily available on multiple
platforms.
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NSIDC chose to use GNU Zip which is only a slight variation of Lempel-Ziv 1977 (LZ1) and
only gives slightly better compression. LZ1 gives better compression then LZW but at the cost of
a greater CPU burden. GNU Zip is readily available on multiple platforms, and its source code is
freely distributed. GNU Zip is not as popular as UNIX compress largely because UNIX compress
is the default package built into almost every UNIX box today and requires no effort for the user to
utilize. For the data sets NSIDC is applying GNU zip to a typical compress ratio of 2:1 was
achieved.

Most DAACs chose not to use compression at all or only on some data sets. There were several
fundamental reasons. One of the biggest reasons was that compression was not needed given their
current data volumes and their current storage capacity. Using a compression algorithm only
created unnecessary overhead for the DAAC to perform effectively. Some of the DAAC sites
reported that their data was not very compressible only getting a 20 to 30% gain. Level 1B data is
already highly compacted and no compression method will reduce its size very much. The
DAACs felt that 20 to 30% compression was not enough to justify compression.

Another reason compression was not used was that compression created a significant burden on
the end user to decompress the data. If the compressed granules were delivered to the client,
decompression of large granules or a large number of granules could take a considerable amount
of time.

3.1.3 Effectiveness

The UNIX compress algorithm uses the LZW algorithm which is believed to yield compression
ratios typically in the 1.3:1 to 2:1 range for Landsat and AVHRR data.  For some data sets
(UARS) it actually expanded the data set; hence, it was not used to compress these data sets. Most
DAAC sites reported that compression varied significantly from data set to data set and even from
granule to granule.

When questioned, most DAAC sites reported the average compression ratio for the data they were
compressing was 2:1. Most DAACs reported performing small studies to reach this conclusion.
However, it is not known if the studies only included "interesting" data, and it is not known of
what portion of the data is "interesting". Interesting data is data over land of cities, cloud
formations etc. Most of the planet is not interesting most of the time. That is, most of the planet is
water and not cloudy. It is possible that some data sets are more compressible then 2:1 if they are
designed to only take meaning results over "interesting" formations. It seems reasonable to
assume that Landsat pictures over the ocean should be more compressible compared to Landsat
images of Washington D. C. One may questions the initial DAAC survey results of overall
compression of 2:1; however at this time, there are no more detailed analysis of global satellite data
compression effectiveness available.

The DAAC sites using UNIX compress reported that the CPU time to compress/decompress
granules was considered negligible, and the CPU time for the PGS to decompress the data before
applying an algorithm was also negligible. However, on a workstation class machine, it can take
considerable time to decompress large granules. A full granule of Landsat TM data on a SPARC 2
station could take approximately 20 minutes to decompress.

GNU zip tends to give better compression ratios then UNIX Compress but at a greater CPU cost.
GNU zip is only a slight modification of the Lempel-Ziv 1977 algorithm. As with most issues in
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compression today, for every GNU zip user who says the algorithm is better, another user will
claim it is no better or even worse.

Lower level products such as Level 1B are hard to compress because the data is very compacted.
Higher level gridded products such as Level 3 data are easier to compress because of the
formatting that has been added to the data. EOSDIS has a large variety of data formats and no
general rule about compression can be made. Some data sets and products are highly compressible
while other can be very hard to compress. (See section 5.2 for further discussion.)

3.2 V0 Browse Product Compression Methods

Table 3-1 shows a summary of compression techniques at the DAAC sites for browse products.
In this paper, browse products are defined as lossy products that are representative of standard
products suitable to meet the requirements set in the requirement specification.

It is difficult to design a browse product because assumptions have to be made about the quality of
the product. What may be acceptable to one researcher maybe highly unacceptable to another
scientist.

3.2.1 Current Methods

Browse products are currently created by sub sampling the full size granules by  factors typically
ranging between 16:1 to 48:1.  Sub sampling the original greatly reduces the size and volume of
the browse file. As shown in table 3-1, most DAAC sites perform no further processing of the
browse images.

EDC and LaRC were the only two DAAC sites that reported using a compression technique on
browse product which can be further compressed in a lossy nature. LaRC reported that they had
incorporated compression of their browse products with HDF, and EDC plans to do so in the near
future.

Both EDC and LaRC are using the current JPEG lossy standard which uses the Discrete Cosine
Transform (DCT). See section 4.3.1.1 for further discussion of the JPEG lossy standard.

3.2.2 Decision Factors

The JPEG standard was chosen for many of the same reasons UNIX Compress was chosen.
JPEG viewers are widely available and in the public domain on almost every computer system,
and JPEG encoder's source codes are readily available and can be easily tailored to a dataset. The
current JPEG standard is also highly effective, and although there are other lossy compression
methods which can produce better results, there is no other lossy compression method which
gives significantly better quality/compression ratio and at a faster speed.

3.2.3 Effectiveness

The JPEG standard is highly effective and easy to implement. There is little development overhead
associated with implementing JPEG because of the large quantity of code available today in the
public domain. JPEG does not require the development of any code books or data set constants.

The DAAC sites that implemented JPEG researched with the scientist to determine what an
acceptable level of loss would be in the browse images.  The scientists required visually lossless
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data (i.e. the human eye could not perceive a difference).  The resulting JPEG implementation had
a JPEG quality factor (JPEG quality factor is an internal use constant to the algorithm) of 30
resulting in a typical compression ratio of 10:1.

The DAAC sites reported that scientists using JPEG had no complaints with the browse images.
The time it took the viewer to decompress the image was well offset by the reduction in data
volume.  The JPEG viewers work fairly fast.  A typical decompression time is only a few
seconds.
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4.  Types of Data Compression Algorithms

4.1 Basic Data Compression Facts

[From Chiang et al., 1991]

All commonly used data compression schemes are based on the concept of entropy coding and
redundancy reduction, that provide for the following;

• Random data cannot be compressed, and if processed will actually expand in size and slow
system speed.

• Data that has been compressed by an optimal scheme cannot be compressed further, and
the output of this process will be a random data stream

• If data compression is implemented at the 'system' level, no benefit will be derived by
incorporating additional data compression in a peripheral or communication channel

Four types of redundancy can be found in most commercial and scientific data;

• Character Distribution: In a typical character string, some characters are used more
frequently than others e.g. vowels

• Character Repetition: When a string of repetitions of a single character occurs, the message
can usually be encoded more compactly that by just repeating the character symbol.

• High Usage Patterns: Certain sequences of characters will reappear with relatively high
frequency and can therefore be represented with relatively fewer bits for a net saving in
time and storage space.

• This is also commonly found in imagery positional redundancy. If certain characters
appear consistently at a predictable place in each block of data, they are at least partially
redundant.

These four types of redundancy obviously overlap to some extent. By examining the type of
redundancy, some decisions regarding the choice of a compression strategy can be made;

• The redundancy type found in a certain application is important, but the predictability of
redundancy type is also just as important.

• An adaptive type of compression would be of little benefit for applications with predictable
redundancy such as text, but would be valuable for business files or scientific data. Any
compression method that adapts to the statistics of the subject data and has a finite
implementation, will have compression effectiveness sensitive to message length.

• The length of the data being transmitted has some importance because adaptive techniques
are awkward or ineffective on short messages. Short blocks are penalized by a start up
overhead needed to convey subject statistics. Large blocks suffer a loss in efficiency
because the blocks lack stable statistics, a typical occurrence in commercial computer data.

• System data transfer rates determine if a one pass procedure is needed for speed or if the
greater overhead of a two pass approach can be justified by better compression results.
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In reviewing these criteria, please note that, much of the published theory in the data compression
field assumes arbitrarily large translation tables and ergotic data sources, neither of which occur in
practice.

4.2 Lossless Data Compression Algorithms

The basic types of lossless data compression techniques revolve around the concept of entropy
reduction and redundancy reduction.

4.2.1 Huffman and Shannon Fano Algorithms

[Portions From Chiang et al., 1991]

Huffman coding is the most well know technique for data compression, dating back to 1952.
Huffman coding  translates fixed size packets of input data into variable length symbols. The
standard Huffman encoding procedure prescribes a way to assign codes to input symbols such that
each code length in bits is approximately Log2(Symbol probability). Symbol probability is the
relative frequency of occurrence of a given symbol (expressed as a probability).

Problems Encountered with Huffman Coding:

• The size of the input symbols is limited by the size of the translation table needed for
compression.

• With Huffman encoding the complexity of the decompress process is big. The length of
each code must be interpreted for decompression and is not known until the first few bits
are interpreted.

• You need to know the frequency distribution for the ensemble of possible input symbols.
The distributions for data files, however, are very application specific and files such as
object code, source code, and system tables will have dissimilar characteristic distributions.

• The optimized code will only exhibit efficient performance over a narrow range of data
entropies.

Dynamic Huffman Codes. In order to eliminate the two pass approach (first to gather statistics,
then to code) a dynamic approach is taken to make Huffman an on line method. Each time the
encoder sees an input element it increments its counter by one, and also builds a new tier.  Through
deterministic methods a tier of all possible elements is built.

Shannon Fano is similar in flavor to Huffman, but that the tier construction algorithm works from
"top down", instead of 'bottom up' as in Huffman.

4.2.2 Binary Arithmetic Coding (IDRC, BAC , Q Coder, WNC)

[Portions from Chiang et al., 1991]

Arithmetic coding, which is an enhancement of Huffman coding, is a data compression technique
that encodes a data string by creating a code string which represents a fractional value of the
number line between 0 and 1. The coding algorithm is symbolwise recursive i.e. it operates upon
and encodes/decodes one data symbol per iteration or recursion. On each recursion, the algorithm
successively partitions an interval of the number line between 0 and 1, and retains one of the
partitions as the new interval. Thus, the algorithm successively deals with smaller intervals, and the
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code string viewed as a magnitude, lies in each of the nested intervals. The data string is recovered
by using magnitude comparisons on the code string to recreate how the encoder must have
successively partitioned and retained each nested subinterval.

Arithmetic coding maps a string of data symbols to a code string in such a way that the original
data can be completely recovered from the code string. The encoding and decoding algorithms
perform arithmetic operations on the code string. One recursion of the algorithm handles one data
symbol. Arithmetic coding is actually a family of codes which share the property of treating the
code string as a magnitude.

All data compression approaches have a model which makes some assumptions about the data
and the events encoded. The first order Markov model is a dependent model , where we have a
different expectation for each symbol depending on its context. The purpose of a context is to
provide a probability distribution or statistics for encoding the next symbol.

Data compression results from encoding the more frequent symbols with short code string length
increases, and encoding the less frequent events with the long code length increases. Arithmetic
coding is capable of accepting successive events from different probability distributions, and acts
directly on the probabilities and can also adapt 'on the fly' to changing statistics. It also operates in a
FIFO fashion.

Each codeword (code point) is the sum of the probabilities of the preceding symbols. The width or
size of the subinterval to the right of each code point corresponds to the probability of the symbol.
In arithmetic coding we treat the code points, which delimit the interval partitions as magnitudes.
Arithmetic coding is capable of using arbitrary probabilities by keeping the product to a fixed
number of bits of precision. A key advantage of arithmetic coding over other methods is that it
contains the required precision so that significant digits of the multiplications do not grow with the
code string.

For arithmetic codes we can view the code as mapping a data string to an interval of the unit
interval.

The BAC algorithm, is a special case of arithmetic coding, and may be used for encoding any set
of events, whatever the original form, by breaking the events down for encoding into a succession
of binary events. The BAC accepts this succession of events and delivers successive bits of the
code string.

Arithmetic codes generate the code string by adding a summand to the current code string and
shifting the result. This summation operation creates a situation called carry over. The basic
conceptual input/output view of the algorithm both for the compression and decompression
process contains an encoder and a special arbitrarily long FIFO buffer "Q" (the "Q" Coder) which
handles the code string and the carry over . The encoder and decoder in practice are interfaced to
the original data via a statistics unit which provides the skew numbers.

Arithmetic codes can achieve compression as close to ideal as desired for given statistics. The Q
Coder is a new development in arithmetic coding. It combines a simple but efficient arithmetic
approximation for the multiply operation, a new formalism which yields optimally efficient
hardware and software implementations, and a new technique for estimating symbol properties of
any method known. The compression process is divided into three basic parts; (1) a model which
converts uncompressed data into binary decisions, (2) a probability estimator and (3) an arithmetic
coder. The decompression process has three similar parts; (1) an arithmetic decoder, (2) the same
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probability estimator, and (3) and the inverse model which converts the binary decisions back into
uncompressed data. The Q Coder is the heart of the data compression scheme used by IBM in its
IRDC.

Currently the best arithmetic results tend to be coming from the Witten-Neal-Cleary (Witten et al.,
1987) encoder.

An issue of concern with arithmetic coding is that some of these algorithms are patented and
copyrighted.  These algorithms tend to be fairly effective generic coders, but they can also be
specialized for a particular data or for a given set of statistics.

4.2.3 Adaptive and Predictive Coding

[Portions From Chiang et al., 1991]

Adaptive and predictive coding methods can be added to the above algorithms to specialize them
for an application such as image encoding. Predictive and adaptive coding will increase the
compression ratio particularly when predictions about the data can be made such as with image
data. Of course, this added compression will come at a greater CPU cost at compression and
decompression.

The application of an adaptive binary arithmetic coder, such as the Q coder, to raw bit plane data is
straightforward. Langdon developed a context model whereby neighboring pixels in a bit plane
form a context, similar in form to the structure of a prediction set used in predictive coding. These
neighbors form a binary word that becomes the context address of the Q Coder. More pixels allow
for a greater number of context possibilities. An extension of the context pixel assignment is to
form the context based on pixels from the current and previous bit planes.

By applying the Q coder in connection with the 2-D autoadaptive coding, the decisions are entropy
encoded via the Q Coder to form a binarization tree, and eliminates the inefficiencies present in
autoadaptive code when starting with too large a block size.

Similar techniques can be used to develop predictors for a multispectral image. Instead of just
using the nearest neighboring pixels to form a predictor as above in the 2-D case, the predictor can
also use the pixels in the adjacent bands. Band ordering techniques can also be employed to
attempt to use the most related bands as predictors for each other. [Tate, DDC94]

Differential pulse code modulation (DPCM) is a popular prediction technique where the encoder
attempts to encode only the new information between pixels. This technique is aimed specifically
at remove the mutual redundancy between successive pixels.  DPCM can be adapted in a similar
method as the arithmetic context based Q-Coder discussed above to attempt to exploit similarities
in the 2-D case and in the multispectral case.

4.2.4 JPEG Lossless Compression

[Portions from Tilton et al., 1991]

To facilitate the exchange of compressed data, certain, the committee known as the Joint
Photographic Experts Group (JPEG) worked for several years to establish compression standards
for still continuous tone images (Wallace, 1991; Pennebaker & Mitchell, 1993). JPEG
compression standards include two basic compression methods: a predictive method for lossless
compression and a lossy compression approach based on the Discrete Cosine Transform (DCT)
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(See section 4.3.1.1 for JPEG lossy standard.) One advantage of using this standard compression
approaches is that very efficient and cost effective software and hardware implementations are
becoming available commercially.

Pred ic tor
Entropy
Encoder

Entropy code
Spec i f ica t ion

Source
Image Data

Compressed
Image Data

Figure 4.2.4-1 JPEG Lossless encoder flow Diagram

The main processing elements of the JPEG lossless compression technique are a predictor,
entropy encoder for prediction error, and entropy code specifier. These main blocks are illustrated
in Figure 4.2.4-1. The JPEG standard provides a choice of eight different predictors (see Table
4.2.4-1) using a choice or combination of three spatially adjacent neighboring samples as listed in
Table 4.2.4-1. The entropy encoder (a class of lossless compression algorithms based on
information theory considerations) is used to compress the prediction errors. The baseline entropy
encoder is the Huffman encoder (Huffman, 1952). An option is given for using an a variation of
the arithmetic encoder Witten-Neal-Clearly (WNC) (Pennebaker & Mitchell, 1993) instead.

Table 4.2.4-1 JPEG Predictor selection table
Selection

Value #

Prediction

Location for x

1 a

2 b

3 c c b

4 a+b-c a x

5 a+(b-c)/2

6 b+(a-c)/2

7 (a+b)/2

The JPEG lossless standard with the WNC encoder achieves one of the highest compression
ratios for image data; however, it is also has greater CPU demand then most of the other
algorithms being discussed here.

See end of section 4.3.1.1 for discussion of a new JPEG standard.
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4.2.5 The Lempel Ziv Series (LZ1, LZ2, DCLZ, LZW) (UNIX Compress, PKZip)

[Portions From Chiang et al., 1991]

In the late '70's, researchers Lempel and Ziv fathered a series of adaptive string based data
compression algorithms for data. Their algorithms known today as LZ1 (LZ77), LZ2 (LZ78), and
LZW are able to achieve high compression rates on many types of data.

They propose to evaluate the complexity of a finite sequence from the point of view of a simple
self delimiting learning machine which, as it scans a given n digit sequence from left to right adds
a new word to its memory every time it discovers a substring of consecutive digits not previously
encountered. The size of the compiled vocabulary and the rate at which new words are encountered
along the way serve as basic ingredients in the proposed evaluation of the complexity of the
sequence.

Their compression algorithms are an adaptation of a simple copying procedure discussed in their
studies on the complexity of finite sequences. Basically, they employ the concept of encoding
future segments of the source output via maximum length copying from a buffer containing the
recent past output. The transmitted codeword consists of the buffer address and the length of the
copied segment. With a predetermined initial load of the buffer and the information contained in
the codewords, the source data can be readily be reconstructed at the decoding end of the process.
The main drawback of their algorithms is their susceptibility to error propagation in the event of a
channel error.

Their compression algorithms consist of a rule for parsing strings of symbols from a finite
alphabet into substrings or words whose lengths do not exceed a prescribed integer, and a coding
scheme which maps these substrings sequentially into uniquely decipherable codewords of fixed
length over the same alphabet. Conceptually, the sliding dictionary method is perhaps the simplest
method that employs a dynamically changing dictionary. The LZ1 algorithm, which can be shown
to be perfect in the information theoretic sense, works as follows: At each stage, the longest prefix
of the unread portion of the input stream that matches a substring of the input already seen is
identified as the current match. A triple is then transmitted, and the input is then advanced past the
current match and the character following the current match. Thus, the LZ1 algorithm remembers
the entire input string and hence uses a dictionary that is unbounded in size. There are no bound on
the number of bits needed to encode the triples that are transmitted and so a variable length coding
scheme is needed. The sliding dictionary method, LZ1, uses fixed size pointers; instead of
remembering the entire input stream, it remembers only a fixed number of characters back, and
instead of pointer guaranteed progress, it uses dictionary guaranteed progress by the reserving of
codes for the characters.

The GNU Zip utility and the PKZip utility use the LZ1 algorithm.

The dynamic dictionary method is the implementation of Lempel and Ziv's second universal data
compression algorithm and is called LZ2 (LZ78). The LZ2 algorithm, like LZ1 can be shown to
be perfect in the information theoretic sense. At each stage, the longest prefix of the input stream
that matches one of the strings in the local dictionary is identified. Then a pair is transmitted, where
'p' is a pointer to 't' in the dictionary and 'c' is the next input character following the current match.
As with LZ1, the transmission of 'c' is a pointer guaranteed process. The input is then advanced
past 't 'and 'c' and the string 'tc' is added to the local dictionary. Thus, the local dictionary used by
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the LZ2 algorithm is unbounded in size and like LZ1, a variable length coding scheme must be
used to construct pointers.

The DCLZ algorithm is fundamentally the same as the LZ2 algorithm.  The basic advantage of the
DCLZ algorithm is that the dictionary is embedded in the codewords and is not explicitly
transferred with the compressed data as a library of codes.  This is accomplished by synchronizing
the compression/decompression process such that during decompression an identical dictionary
can be built to match the dictionary built during compression.

The LZ2 and DCLZ algorithm tend to be more popular for implementation in hardware because
unlike the LZ1 algorithm they do not require the storage of the entire input stream to encode the
next character.  Hence, LZ2 and DCLZ require less memory, but are not as optimal as LZ1
particularly if a limit is put on the dictionary size.

Welch, who experimented with the LZ2 algorithm and applied the FC Freeze heuristic, calls it the
LZW algorithm. The LZW algorithm is organized around a translation table, referred to as a string
table, that maps strings of input characters into fixed length codes. The LZW string table has a
prefix property in that for every string in the table its prefix string is also in the table. The LZW
string table contains strings that have been encountered previously in the message being
compressed. LZW uses the 'greedy' parsing algorithm, where the input string is examined
character serially in one pass, and the longest recognized input string is parsed off each time. A
recognized string is one that exists in the string table. The strings added to the string table are
determined by this parsing: Each parsed input string extended by its next input character forms a
new string added to the string table.

This algorithm makes no real attempt to optimally select strings for the string table, or optimally
parse the input data. It simply produces compression results, that, while less than optimum, are
effective. Since the algorithm is quite simple, its implementation can be very fast. The principle
concern in implementation is storing the string table. This form is well suite for hashing methods
and some type of hashing is normally used. Unfortunately, this simple algorithm has two
complicating problems, (1) It generates the characters within each string in reverse order, (2) It
does not work for an abnormal case.

The principal implementation decision is choosing the hashing strategy for the compression
device. Software implementation of LZW is possible but significantly slower. Compression speed
is very sensitive to the hash calculation time in the inner loop. Software hashing is relatively slower
and less effective than hardware hashing, and generally needs to be hand coded in machine
language.

UNIX compress and VMS compress use the LZW algorithm. These utilities tend to be faster but
not as effective as GNU Zip and PKZIP.

The Lempel-Ziv algorithm is patented algorithm and some of the variations describe here also
have copyrights associated with them. Despite the some criticism in industry about the Lempel Ziv
algorithm's effectiveness there is no algorithm that consistently works better in all cases.

4.2.6 Rice Algorithm

[Portions from Tilton et al., 1993]
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The Rice algorithm (Rice et al., 1991) is a lossless compression scheme that can adapt to data of
any entropy range (i. e., level of information content). In general, the Rice algorithm will compress
presentation image data better then Lempel-Ziv.

The algorithm consists of two separate functional parts (see Figure 4.2.6-1): a pre-processor and
variable length encoder. The pre-processor consists of a predictor followed by a symbol mapper,
while the variable length encoder performs the actual adaptive symbol encoding.

Figure 4.2.6-1 Rice encoder flow diagram

Pred ic tor Mapper
V a r i a b l e
Length

Encoder

Compressed
DataSampes

Pre-Processor

The pre-processor spatially decorrelates the data through a prediction scheme (i. e., the prediction
errors are much less spatially correlated than the original data), and maps the resulting prediction
errors to a sequence of non-negative integers. While the baseline Rice algorithm employs a simple
sequential difference predictor, higher order predictors can be used. The degree of spatial
correlation exploited by the Rice algorithm depends upon the order of the predictor employed.

The variable length encoder, described graphically in Figure 4.2.6-2, consists of multiple coders,
each targeted for a different source entropy level. The entropy coder begins with a winner selection
this allow for sharing of hardware among the many parallel coders.  If the encoder cannot
compress the data, the default coder sends out ID bits followed by uncompressed data.

Figure 4.2.6-2 Rice Variable Length Entropy Encoder
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The Rice algorithm exploits the spatial correlations in image data and generally provides better
compression image data when compared to text oriented compression algorithms (such as
Lempel-Ziv, see section 4.2.5). A related approach including both prediction and error modeling
and various refinements to increase algorithm efficiency, was recently reported by Howard and
Vitter (1993).  Howard and Vitter report their modifications of Rice make it 5 times faster then
lossless JPEG with about the same compression ratio.

COTS compress chips implementing the Rice algorithm are available today.  Some companies
claim their Rice Chips will go directly onto a SCSI personality card making the compression
transparent to the system. The Rice algorithm has been used successfully on board spacecraft by
NASA to reduce the volume of SAR data transmitted by the spacecraft. NASA Goddard has also
developed Rice chip sets.

4.2.7 Progressive Techniques

Progressive techniques combine the methods discussed in section 4.3 Lossy Data Compression
Algorithms with a residual image. The lossy image(s) and the residual are also compressed using
one of the above techniques. If the compression techniques are well tuned to complement each
other in an ideal case, total compression may be increased by 10-20%.

A progressive technique enables a client to view a browse image before getting the final product,
and enable the final product to be sent with no redundant data being sent to the client. Some
implementations of progressive techniques allow the client to get better and better image qualities
without sending redundant data.  The user can stop the refinement process after any stage of
refinement, if so desired, saving data transmission costs.  Figure 4.2.7-1 gives a graphical
representation of a progressive technique implementation.

Figure 4.2.7-1 General Progressive Technique
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Progressive techniques save data storage and transmission cost but significantly increase
compression and decompression complexity. Not all lossy techniques naturally lend themselves to
multi-level transmissions, but any lossy technique can have a residual stored and sent to make the
final data lossless. A big disadvantage of progressive techniques is that the lossless product is not
readily accessible for processing and has to be built by combining several files. If each of these
files is compressed using an entropy encoder, this could add significant processing time.

4.2.8 Other Lossless Compression Techniques

Other techniques include one dimensional run length encoding, bit plane processing, and binary
compression.

One dimensional run length encoding: The application of 1 D run length encoding to bit planes is
well known, and has appeared most recently in the field of facsimile. In this method groups of 1's
and 0's are lumped together in an abbreviate mnemonic which can be losslessly unencoded.

Bit Plane Encoding: An NxM bit image can be considered as a set of K NxM 1 bit planes, each of
which can be coded via a standard binary compression technique. Common bit plane encoding
algorithms involve the use of run lengths of the 1's and 0's, or two-dimensional variable block
coding.

Binary compression techniques that involve the formation of one dimensional run lengths or two
dimension variable size blocks work best on coherent bit planes, that is, long runs or large uniform
areas of 1's and 0's. The Gray code is a method of encoding a set of numbers such that the
successive numerical changes will result in a change of only one bit in its binary representation.
The hardware implementation of the Gray code is simple and inexpensive.

4.3 Lossy Data Compression Algorithms

Lossy coding techniques to arrive at low bit rates by exploiting certain shortcomings in the human
visual system, or by tolerating a degree of image distortion. Visually lossless is a term used to
describe a lossy coding technique whereby the reconstructed image is visually indistinguishable
from the original under specified viewing conditions. Many techniques are commonly used such
as: DCT, DPCM and Vector Quantization.

4.3.1 Transforms

A significant amount of work in lossy image compression revolves around the use of transforms
or block quantization.  A block of data is unitarily transformed so that a large fraction of the total
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energy is packed into relatively few transform coefficients.  The coefficients can then be quantized
and encoded.  An optimum transform coder is defined as the one that minimizes the mean square
distortion of the reproduced data for a given number of total bits. The most popular transform
today is the Discrete Cosine Transform (DCT) described below. Other transforms include the
Karhunen-Loève Transform (KLT), Subband/Wavelet, Sine, DFT, Hadamard, HAAR, Slant, and
Fractals.

All transforms revolve around the same concept of condensing energy into a smaller number of
coefficients.  For this reason the below discussion will only discuss the three most popular: the
DCT, the KLT, and Subband/Wavelet. Some applications revolving around these transforms will
also be discussed.

In general, transform coding achieves relatively larger compression than predictive methods.  Any
distortion due to quantization gets distributed over the entire image which creates a more visually
lossless appearance then with predictive methods.  At low distortion levels predictive and
transform methods will perform very similarly, but for higher acceptable distortion levels
transforms will out perform predictive methods.  This is because of two reasons.  First, predictive
coding is quite sensitive to changes in the statistics of the data and second because a finite-order
causal representation of a two-dimensional random field may not exist.  However, predictive
methods are significantly less computationally expensive then transforms.

4.3.1.1 JPEG Lossy/Discrete Cosine Transform (DCT)
[Portions from Tilton et al., 1993]

The JPEG lossy compression approach is based on the Discrete Cosine Transform (DCT) of 8 x 8
blocks from the input image. In the encoding process, each 8 x 8 block is transformed by the
forward DCT (FDCT) into a set of 64 DCT coefficients (see Figure 4.3.1.1-1). These 64
coefficients are then normalized and quantized by dividing with a user defined 64 element
normalization array and rounding to the nearest integer. Finally, the quantized coefficients are
encoded with an entropy encoder.

The first DCT coefficient is called the zero frequency or DC coefficient, and is entropy encoded in
a different manner than the remaining 63 DCT coefficients, called the AC coefficients. Before
entropy encoding, the quantized DC coefficient of each block is replaced by the difference between
it and the quantized DC coefficient from the previous block. The quantized AC coefficients from
each block are converted to a one-dimensional vector through a zigzag scan  before entropy
encoding. Finally, the DC and AC coefficients are entropy encoded using separate entropy tables.

Figure 4.3.1.1-1 JPEG/DCT Lossy Image encoding scheme
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The compressed output stream for each 8 x 8 block consists of the encoded DC coefficient
followed by the encoded AC coefficients. The decoding process is a straightforward reversal of the
encoding process. The 64 coefficients are decoded and used to reconstruction 8 x 8 coefficient
image which then is mapped back to image space by Inverse DCT (IDCT).

In some implementations of the JPEG/DCT lossy compression, a quality factor (e. g., Q) is used
to describe the degree of quantization employed in the quantization step. In some implementation,
Q can properly range from 25 to 100 (a Q of less than 25 is possible, but a JPEG conforming
decoder would not be able to decode the result). A Q of 100 refers to no quantization, with any
resulting compression loss coming solely from subsampling or roundoff errors. A Q value of 100
gives relatively low compression ratios. A Q of 50 is quantization table scale factor 1.0
(unmodified JPEG table i.e. default). For most image data the value of Q produces a reasonably
high compression ratio with good reconstructed image quality. A Q of 75 is quantization table
scale factor 0.5 (one-half the standard quantization), and produces moderate compression with
visually high quality image reconstructions. A Q of 25 is quantization table scale factor 2.0 (twice
the standard quantization). Most images will appear blocky at this level of quantization. However,
a much higher compression ratio can be achieved.

The baseline JPEG/DCT accepts 8-bit images and uses separate Huffman tables (Huffman, 1952)
for entropy encoding the quantized DC and AC coefficients. However, the options in the JPEG
lossy standards allow either 8-bit or 12-bit precision with either Huffman or arithmetic encoding
(Witten et al., 1987) of the coefficients. Other options exist in the JPEG standard for the special
case of RGB color image data, and for progressive and hierarchical compression modes. The
initial image reconstruction for the progressive mode is a full size low spatial resolution version of
the image, while for the hierarchical mode it is a reduced sized version of the image. More refined
reconstructions are produced in stages for both the progressive and hierarchical modes.

The implementation of DCT can be computational intensive, there are techniques such as
Hadamand transformation which can simplify the implementation complexity. Currently, IMOS
has COTS chips can perform 16xl6 DCT with clock rate of 20 MHz.

Currently the JPEG standard only exists for 8 or 12 bits per pixel. It is not trivial to develop a
standard that will work with more bits per pixel. However, this development cost would be
incurred for implementation any of the other transforms discussed in this paper unless previous
research implementing the transform can be found.

As of early 1994, JPEG put out a call for paper to implement a new JPEG standard both lossless
and lossy. The international committee is also considering a multispectral standard and a satellite
image standard. The international committee stated that no member on the committee and the level
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of expertise needed to write a satellite image standard and this issue was referred the U.S.
committee. In the next few years, it is highly likely that JPEG will release a new entirely updated
standard, and a multispectral and satellite image standard which would be a new addition.
The Independent JPEG Group's free JPEG implementation, version 1, release date October 7, 1991. Version 4

was released on December 10, 1992, and it (or a later version) is available by lnternet anonymous FTP
from ftp.uu.net graphicsfjpeg/jpegsrc.v4.tar.Z.

4.3.1.2 Karhunen-Loève Transform and other Transforms

The implementation of the KLT and most of the other transform methods would be very similar to
the method described above in the DCT.  Each transform needs to tweaked to develop a good
quantization table for encoding purposes.  An even better quantization and encoding method can be
developed if allot of information is known about the kind of images that will be transformed.

The KLT is considered an optimum transform coder because it minimizes the mean square
distortion of the reproduced data for a given number of bits.  For this reason, the KLT is often
referred to as the baseline standard which all other methods can be compared to.  However, the
KLT can be difficult to implement and very computationally costly.  For these reasons, the cosine
or other sinusoidal transforms are preferable.

Because most or the basic concepts of implementing all transforms is very similar, only a handful
will be discussed in this paper in great detail.  Below is a brief explanation of some of the
advantages of the other transforms.

Cosine: Perform best for highly correlated data.

Sine: Useful for implementing a fast KL or recursive block coder.

Hadamard: Useful for small block sizes (4 x 4).  Simpler then sinusoidal.

Haar: Useful if higher spatial frequencies are to be emphasized.  Poor compression on a
mean square basis.

KL: Optimum on mean square basis.  Difficult to implement.  Sinusoidal transforms
are preferable.

Slant Best performance among non sinusoidal fast transform.

Fractal Good for natural looking images.

4.3.1.3 Subband/Wavelet Compression

[Portions from Tilton et al., 1993]

The related methods of subband and wavelet-based image compression have been much studied as
of late. In these methods, images are decomposed into a number of frequency bands using
"analysis filters" such as quadrature mirror filters, or wavelet filters. For two-dimensional image
data, four frequency bands are most commonly employed, with the first band containing the
horizontal and vertical low-pass filter result. The other bands then contain the other results from
combining horizontal and vertical low- and high-pass filters. The low-pass band usually contains
the highest energy and the bands with one or more high-pass filters results usually contain
comparatively less energy. Each of these bands can be decimated (by dropping, every other
sample in the horizontal and vertical directions) without any loss of information.



Working Paper 26 194-00316TPW

Compression can be obtained by selective quantization of the four bands. Since the lowpass band
contains the most energy, this band is quantized the least. Since the other bands contain less
energy, they can be more heavily quantized without affecting the visual quality of the reconstructed
image data. The low-pass band can be further compressed with a lossless technique, or can be
recursively processed (prior to quantization) in the same way the original image was processed,
thus reducing the low-pass band bit rate by a factor of four at every recursion level.

Figure 4.3.1.3-1 Subband/Wavelet compression of A to Ac (Image A Compressed)
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In Figure 4.3.1.3-1, several stages of subband/wavelet decomposition are illustrated. The lowpass
band, A,. is obtained by convoluting the input image, A, with the low pass filter, G, in both the
row and column directions, followed by decimation (subsampling) by a factor of 2. Often a simple
low-pass filter such as the Haar filter produces good results (Glover & Kwatra, 1992). After n
stages of decomposition, the nth-stage low-pass band, An, is produced, plus several stages of high
frequency detail images (D11, D12, D13, ..., Djl, Dj2, Dj3, ..., Dni, Dn2, Dn3). The jth-stage high
frequency detail information is contained in Djl, Dj2, and Dj3, which result from convolving with
the low-pass filter, G, and the high-pass filter, H, along rows and columns, as shown in Figure
4.3.1.3-1. The filtered result is decimated by a factor of 2. The outputs of the several
decomposition stages are quantized and combined in a multiplexing scheme.

The reconstruction of the subband/wavelet encoded data is exactly the reverse process. The four
channels are up sampled by a factor of 2, convolved with the appropriate inverse filters, and added.
If the compressed image was the result of n stages of decomposition, n stages of synthesis are
required to reconstruct the input image to the fullest detail.

Subband/wavelet encoding is often used when progressive compression/decompression is desired.
Since An is a lower resolution version of the input image, A, it can be used in image browse
applications. At an intermediate stage, j, Aj is an intermediate resolution version of the input
image. The final result, A', is a full resolution reconstruction of the original image, with some loss
in detail (as determined by the amount of quantization employed). However, this final result can be
of visually lossless quality. Lossless reconstruction can be obtained if residuals (the differences
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between the A and A') are losslessly encoded by some other method and combined with the final
wavelet/subband synthesis result.

Combining subband or wavelet encoding with vector quantization (VQ) is a promising approach
to compression of image data. Recently, Antonini et al. (1992) showed that a combination of
wavelet encoding and VQ provided visually acceptable image reconstructions down to less that 0.5
bits/pixel. Even better results are reported (Barnes & Holder, 1993; Kossentini et al., 1993) from
combining multi-stage residual vector quantization (RVQ) with subband coding. An application of
wavelet encoding to progressive transmission is given by Blanford (1993). Blanford showed that
using wavelet encoding in his fine-grained progressive transmission scheme resulted in a faster
decrease in the image's normalized MSE with percentage of data submitted when compared to two
other encoding methods.

Most people making predictions as the future standards that will be produced by JPEG feel that
some form of the subband/wavelet transform will be in the next standard.  Most people
researching in this field report the best results for visually lossless images and the lowest bit rates.

4.3.1.4 Multispectral KLT-Wavelet Data Compression

Epstein et al., (1992) report on a hybrid approach for variable loss compression of multispectral
image data using the Karhunen-Loève transform (KLT) and wavelet compression. They suggest
that this approach is suitable for browsing multispectral image data. The approach is as follows:

i. Subtract the mean value from each spectral band.

ii. Compute the KLT from the n-band zero-mean image and apply it to the zero-mean
multispectral image data.

iii. Apply the wavelet transform to each of the resulting spectrally decorrelated principal
components.

iv. Quantize and code the spectrally and spatially decorrelated data using run-length encoding.

v. Apply Huffman coding to all the data.

The mean values and KLT eigenvectors were Huffman coded and prepended to the coded data.
The amount of compression (and loss) is controlled by specifying the quantizer bin size in step iv.

Most multispectral data exhibits a significant amount of correlation between spectrally adjacent
bands of data. This hybrid approach takes advantage of this spectral correlation through the KLT.
The wavelet transform then exploits the spatial correlations between neighboring pixels.

This hybrid approach was tested on a 512-by-512 pixel section of a Landsat TM image of Kuwait.
A compression ratio of nearly 11 was achieved for a quantizer bin size of 32, and a band average
MSE of 6.85. This compares to a compression ratio of 7.5 and a band average MSE of 10.95
when the wavelet compression was applied directly to the image data (no KLT employed). A
similar approach reported by Markas and Reif (1993) reported perceptually lossless image quality
with a Landsat TM image of Washington, DC at compression ratios of 15 to 24 (depending on
spectral band).
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4.3.2 Vector Quantization

[Portions From Tilton et al., 1993]

Vector Quantization (VQ) is the vector extension of scalar quantization, and is designed to reduce
the bit rate over communications channels or to reduce data file volumes for storage (Gray, 1984).
The VQ vectors are obtained from two-dimensional image data by systematically extracting non-
overlapping blocks from the image. Such vectors allow VQ to exploit the two-dimensional
correlations in the image data. (This exploitation is similar to the exploitation achieved in adaptive
and predictive coding.)  If the image is multispectral, non-overlapping cubes may be used,
allowing VQ to also exploit the spectrum correlations. The blocks (or cubes) are converted to
vectors by performing a (band by band) raster scan of each block.

VQ builds up a dictionary of a limited number of representative vectors, called codevectors, and
then codes the image by using the index value of the closest code vectors from this dictionary,
called a codebook, in place of each image vector. The codebook is optimal, for a given number of
codevectors, if the image reconstructed from the codevectors is as similar as it can be to the
original image over all possible codebooks of that size. If the Euclidean distance is used as the
criterion for choosing the closest codevector to the image vectors, the image constructed from the
optimal codebook will be the most similar image that can be so constructed in terms of Mean
Squared Error (MSE).

Each codevector is represented by an address containing log2m bits, where m is the number of
codevectors in the codebook. Assume vectors of size k are drawn from the input image and
matched with those in the codebook. Using the addresses of the matched codevectors to represent
the input image vectors results in a decreased rate of (log2m)/k bits/pixel or compression ratio
(CR) of (k*b)/log2m, where b is the pixel brightness resolution in bits/pixel in the original image.
In all practical situations the codebook size, m, is much smaller than n, the number of vectors
extracted from the input image.

The most important phase of VQ is the training process in which an optimal codebook (by some
error criterion such as least MSE) is learned from the input samples. The most widely used
training algorithm is the Linde-Buzo-Gray (LBG) algorithm (Linde et al., 1980). In this algorithm,
the initial state of the codebook is randomly selected from the input sample set. The codebook is
then improved iteratively by mapping all the samples from the training set onto the codebook and
replacing the current codevectors with the centroids of all vectors that mapped onto each
codevector. Convergence occurs when a minimal change occurs in the codebook from one
iteration to the next. See Kohonen (1990) for an alternative training approach based on the "Self
Organizing Feature Map."

Both the training and coding phase of VQ require finding the codevector which is the closest
match to a given vector. Computing this closest match requires computations proportional to the
size of the codebook, making this step computationally expensive. Computational cost can be
reduced by employing suboptimal approaches such as the tree structured approach (Gray, 1984),
or the pruned tree structured approach (Chou et al., 1989). An alternative approach to reducing the
processing time for training and coding is to implement these phases on a SIMD (Single
Instruction, Multiple Data stream) massively parallel computer (Manohar & Tilton, 1992). If the
number of processors in the SIMD machine is greater than or equal to the number of codevectors,
the computations required for matching codevectors are proportional to the number of bits
contained in a codevector, rather than the number of codevectors in the codebook.
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VQ techniques are particularly suitable for data archives and distribution across computer network
applications due to asymmetrical coding and decoding efficiencies. The coding is computationally
expensive, but is a one time effort, and can be done at archival center using a large capacity
machine. The decoding part, however, is a table lookup process which can be done at the user end
very efficiently, so users are not burdened with computational difficulties.

Progressive Vector Quantization (PVQ) is a variant of VQ designed to provide multiple levels of
compression (Manohar & Tilton, 1992). (See Section 4.2.7 Progressive Transmission) In PVQ,
an image can be decomposed to several levels as long as this decomposition is economical for
lossless compression. The tradeoffs are compression ratio and computational requirements. As the
number of decomposition levels increases, the overall effective lossless compression ratio
increases asymptotically to a maximum level, after which it may decrease. These results are
reported in more detail in Manohar and Tilton (1993).

There are many other variations of VQ reported. Recent examples of interest are: a mean removed
variation of weighted universal vector quantization (Andrews et al., 1993), and fast VQ algorithms
based on k-dimensional trees and on a neighborhood search algorithm (Arya and Mount, 1993).

4.3.3 Other Lossy Compression Methods

Some of the methods discussed in section 4.2 Lossless Data Compression Algorithms of this
paper can also be implemented in a lossy manner. Predictive and adaptive methods can become
lossy by not completely encoding the error signal. Many of the lossless methods have some sort
of binary tree or hashing table in the implementation, and these methods can become lossy by
using a pruned tree approach. Also, simple outline pictures can be made by simple filtering
techniques.

4.4 Hybrid Techniques

A lot of data compression implementations combine techniques to achieve better results. For
example, you can apply lossless data compression technique to a lossy data compression product
to achieve additional reduction, or apply the lossless technique to the difference between original
image and 'lossy' image to reconstruct the original image (See Section 4.2.7 Progress Techniques.)
Methods can be combined to exploit the similarities between the spectral band as described in
section 4.2.3 Adaptive and Predictive Coding and 4.3.1.4 KLT-Wavelet.

4.5 Bit Error Tolerance

More research and investigation needs to be done to determine the tolerance of these algorithms to
bit errors. Certainly most bit errors would go undetected in most of these algorithms, and the
ability of the algorithm to continue decompressing compressed data in the result an eronenous
value is found in the compressed file will be largely implementation dependent.

4.6 Ongoing Research by GSFC

4.6.1 Model-Based Vector Quantization

[Portions from M. Manohar et al., 1994]
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M. Manohar is currently researching a model based vector quantization MVQ technique.  MVQ
will eliminate the need to develop and store codebooks (as described in section 4.2.7) by
generating the codebook internally using error models at the coding and decoding ends from a few
image specific parameters.  Two different models have been explored for mean removed vectors
from the source images.  The first one is a Laplacian multivariate (LMV) model and the second
one is based on the first order Markov random field (MRF) model. In LMV model, the source
statistics are obtained by computing the covariance matrix of the mean removed vectors.  In MRF
each vector element is the weighted sum of its spatial neighborhood elements and the a Laplacian
random error.  For the given source the optimal random field model parameters are learned by
minimizing the mean squared error (MSE) between input image and reconstructed image.

MVQ has been tested on AVHRR data, and the results using both models are better than the
results of VQ using codebooks generated by a training set which does not include the images to be
coded.  The Lossy JPEG standard produces a higher quality browse result as does VQ when the
training set includes typical encoded images. The advantage of MVQ and VQ over JPEG is they
are easy to develop for images that do not fit into the current JPEG standard (8 or 12 bits per
pixel.)

4.6.2 Triada's, N-Gram product

GSFC is also currently trying to test a commercial product still in development by Triada
corporation called the N-Gram. The N-Gram works as follows: A stream is parsed into sets of
words according to rules that are empirically determined to be appropriate for the data type.  The
processor receiving the input word pattern searches its local memory to determine if the input
word pattern was previously recorded. If it has previously occurred, a counter is incremented and a
signal representative of the storage location of the pattern is sent to the subsequent processing level.
If the pattern has not previously been recorded, it is assigned a place in storage, a signal
representative of its new location is sent to the subsequent processing level, and a counter is
increment to the value 1. The signals sent to the next processing stage are handled in a similar
manner. That is, the signal goes through the same algorithm using different memory storage
patterns recursively nine times.

The memory storage patterns become very large as the system is still learning the input stream. In
theory (unless the input stream is completely random), the memory structure will eventually
converge and need to grow no larger. At this point, Triada claims satellite image data can be
losslessly compressed at a ratio of 73:1. This high compression is achieved by exploiting the
similarities between the images.

GSFC has been trying to replicate Triada's claim and has been unable to do so because they have
not had access to a large enough computer system. Triada claims it needed 3.6 GB of memory to
compress 8 bit Landsat and NOAA data. There is a very real question of when and where does the
memory structure converge. Also the 73:1 compression ratio claim does not include the size of the
data kept in the memory structure. GSFC is still trying to verify Triada's claim.

Currently N-Gram is not commercially available and has no major corporate sponsor. Without a
corporate sponsor it is doubtful if N-Gram will ever be a marketing success. The N-Gram product
requires a very big super computer with a large amount of on board memory which makes it a
very expensive compression technique to implement. N-Gram could only be cost effective for
very large storage requirements and for data sets of a limited entropy level.
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5 Applicability to ECS and Research
Recommendations

5.1 How will ECS use data

Adopting a data compression methodology for ECS must be sensitive of ECS's needs. The
ultimate data compression methodology will not necessarily be the method that yields the top
compression ratio. More critical issues probably facing ECS are the processing demand of
compression/decompression and the conveyance of decompression.

5.1.1 Other ECS elements

If compression is to be used in ECS beyond the archive (data server), the issue of how and where
data will be decompressed becomes very relevant. If compressed data is sent to processing
elements or other DAAC sites, these elements must decompress the data before processing can
begin. As granule sizes become larger, this can become a very laborious task. A trade study will be
needed to determine if the cost of additional processing power justifies the reduction in
communications bandwidth. Another possibility to reduce network bandwidth, is to use network
compression between ECS elements.

5.1.2 Client Usage

An even more difficult question to answer is, how clients will use and receive ECS data? Details
of this question are supposed to be answered by the User Data Model. In the future,
communications bandwidth will probably remain as expensive or change moderately in price
compared to today; however, processing power will probably be much cheaper. Also if the user
receives media distribution (also decreasing in price) of data, will the reduction in media and
shipping cost offset the burden of the client to decompress the data? Ultimately some user will
probably want to receive compressed data, and some users will want to receive uncompressed
data.

One possible solution to reducing the complexity of dealing with compressed data to the client is to
include the compression/decompression software in the IMS toolbox.

5.1.3 Hierarchical Data Format

Hierarchical Data Format (HDF) is also an issue. In HDF, the data is supposed to be layered so it
is easy to reach into to file and pull out only the necessary data. If an entire HDF granule is
compressed as one file, the entire granule would need to be decompressed to access the necessary
data. Obviously a preferable approach would be to compress subsection of the file as separate
entities so they could be decompressed as needed. An important question about HDF that needs to
be addressed is where are HDF files made? Are HDF files built up on the from pieces at time of
retrieval?  In this case, it would be easy to keep parts of the file in a compressed format using
hardware compression. Or, are entire HDF files stored in the archive? In this case if sections of the
file are compressed separately, the complexity of compression and decompression routines
increases particularly if hardware compression is being used
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5.1.4 Browse Data

The browse data portion of the archive is perhaps one of the few areas where significant storage
and retrieval costs saving can be realized because lossy compression is probably acceptable for
most browse data sets. A subsampled 8 bits per pixel image can be reduced easily  by a factor of
10:1 and still be visually lossless. However, it can be very challenging to determine an acceptable
quality for browse images of each data set.

The HDF formats of browse data are also important to data compression for the reasons discussed
above in section 5.1.3.

Some engineers have suggested that progressive browse techniques should be used to enable the
client to request better and better quality images. Doing this could be expensive for storage. It is
not known if users want this option or would prefer just to have visually lossless browse images.
The difference in transmission time needs to be considered to determine if there is a significant
advantage in sending low quality browse images with an option to send more data in the future
versus just sending the visually lossless browse images. Another issue is whether or not scientists
even want the capability of increasing the browse quality.

Progressive compression techniques for browse images can be taken to the extreme of receiving
lossless data as described in section 4.2.7 by storing residual images. This can be very expensive
from a storage point of view because of the added storage and retrieval costs of all of the residuals.
Despite that the no redundant data needs to be stored actually resulting in more highly compressed
data, it would be difficult to recommend that lossless data be built from several granules each time
requested. Considering bulk of ECS's data needs will be for processing which is always required
in a lossless format, lossless granules should only require a simple decompression routine of one
granule at the most.  For this reason, progressive browse techniques resulting in full resolution
order will probably require the residual to be built as needed.

Another browse question is: will browse data be stored in an archive, or will it be built as needed?
Certainly some browse data of more popular data sets will be stored in a browse storage area;
however, there will likely be a cut off in temporal resolution or of data sets as to how much
browse data will be readily available. Other browse images will probably need to be built from the
lossless granule. Obviously the more compression employed in the browse products the more
browse products can be stored by the ECS system, assuming browse products are kept in a
separate area of the archive as currently envisioned.

5.1.5 Quick Look Data

What are the quality factors associated with Quick Look Data? For now, it will be assumed that
quick look data will be produced using the same algorithm as browse products.

5.1.6 Issues Summary and Other Issues

Does the CPU burden to decompress justify the transmission or media savings?

What is the threshold of acceptable CPU burden to compression ratio?

What impact will bit errors within the archive have on a compressed file?

Is it better send compression files or use network compression to compress the packets?
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Does ECS have a multi-resolution browse requirement?

If networked attached storage is implemented, will data be subsetted directly from the tape drives?
Will compression of data prevent this?

5.2 ECS data and Compression

5.2.1 The Data Levels

5.2.1.1 Level 0 Raw Data

Depending on whether or not other sources (EDOS) archive all level 0 data, level 0 data needs to
be treated differently then all other data. If ECS is the designated as the sole source archive of level
0 data, then the only compression option would be no compression. Any potential loss of level 0
from compression complications would not justify the cost savings of compressing level 0 data.
Level 0 data is very compact any very hard to compress; therefore, it is possible that no
compression is justifiable on level 0 regardless of which system is responsible for archiving it.

5.2.1.2 Level 1 Data

Level 1A and 1B data will largely be multidimensional arrays. Level 1 data is fairly compact by
definition and in general will be hard to compress. Some data sets will probably be much more
compressible then others depending on the entropy rate of the data the instrument collects. Level
1B data represents the greatest volume of the archived data. Level 1B tends to be image data which
mean that the Rice algorithm (or other arithmetic coder with a predictor) should compress Level
1B data better then the Lempel-Ziv algorithm.

5.2.1.3 Level 2 Data

Level 2 data is derived from level 1 data and other level 2 data. Significant portions of level 2 data
are raster and array data. Level 2 data contains more formatting information and is less compact
then level 1 data; and therefore, level 2 data should be more compressible then level 1 data.
However, each data set will probably perform differently, and dataset compressibility may vary
significantly from granule to granule as the instrument detects different features of the planet. Level
2 data represents the second largest class of data.

5.2.1.4 Level 3 Data

Level 3 data is global gridded data so level 3 products of the same data set will have similar
compression ratios. As with level 1 and 2 data, level 3 data compressibility will vary from data set
to data set. There are very few level 3 products, and the combined total of the level 3 products is
only a small portion of the archive.

5.2.1.5 Level 4 Data

Very little can be said about level 4 products trends. Level 4 products are modeling results and will
vary greatly in diversity. Therefore, no conclusion about level 4 compressibility can be made.
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5.2.1.6 Browse and Quick Look Data

Browse and quick look data products are all subsampled products from the above levels. As
discussed in section 5.1.4 and 5.1.5, these data sets can be compressed using a lossy method.
Currently there is no compression method which is significantly better then JPEG which is being
used in V0 with compression ratios of 10:1. There are methods which will generally produce a
better quality compression ratio then the JPEG lossy standard such as subband/wavelet encoding.
A tradeoff study would be required to decide if it is justifiable to use a method other then JPEG.
Given the conveyance and availability of JPEG, it is not very likely that another method should be
employed. The fundamental limitation for JPEG is that it is only defined for 8 bits and 12
bits/pixel. If ECS has other browse requirements, other methods will have to be developed.

It is not trivial to come up with generic lossy compression algorithms as exists for lossless
techniques. As new data sets develop, the quality factors associated with a lossy compression
algorithm need to be established. If several spectral combinations are need, each combination may
need to be calibrated separately because different kinds of features need to be preserved. All of this
can become a nightmare from a quality assurance point of view. More information about browse
and quick look requirements are needed to make a conclusive recommendation.

5.2.2 The Data Sets

The following data sets groupings are similar in nature and should have similar compression
statistics.

AVHRR, Landsat, ASTER, MISR, and MODIS (Multispectral Radiometers) -- MODIS, ASTER
and MISR are the largest sets (in that order) with sizes of 951GB/day, 455GB/day, and
263GB/day (not including reprocessing) respectively. MODIS is on two platforms AM-1 and
PM-1 so the actual data rate when both are flying is 1902 GB/day. Landsat 7 is a non-EOS
platform but will store about 122GB/day of data on ECS. All are multispectral data sets with level
1B radiance data being the largest portion. Interesting level 1B multispectral data from past NASA
missions of Landsat and AVHRR can typically be compressed by UNIX compress by a factor of
1.5:1 to 1.8:1, and by using a successful predictor, multispectral images can be compressed from
2.5:1 to 2.8:1 or about a 50 to 60% improvement. The data model states that a MODIS level 1B
granule will be 1.3GB, and MISR will have a level 1B granule sizes between 3 and 5GB. There are
no compression statistics dealing with such large granule sizes, and it can not be said with
authority that past compression statistics of multispectral images are valid for granules of such
large sizes. Such large sizes may not compress well using hardware compression schemes that use
a limited dictionary size such as the modified LZ2 algorithm. Therefore if hardware compression
was desired to compress these large granules, arithmetic coders such as IRDC and the Rice
algorithm would probably be preferable. From a compression/decompression point of view,
clearly these granules should be broken up into smaller pieces before storing on the ECS system if
there is a significant demand to have these granules subsetted or partitioned by clients. If these
granules are stored as whole pieces, the entire granule will have to be retrieved and decompressed
to access any subset of the granule.

The ASTER, MISR, and MODIS data sets represent almost 95% of the EOS data. If these data
sets can be compressed successfully all other compression discussion is somewhat moot because
of how little data the remaining data sets represent. Almost 70% (not including reprocessing) of
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these three data sets is level 1A and 1B data which is very difficult to compress because the data is
so compact.

ERBE is similar to CERES. CERES is the 4th largest EOS data set at over 10GB/day on TRMM,
over 21GB/day on PM-1, and over 21GB/day on AM-1. It is a small data set when compared to
MODIS, MISR, or ASTER.

AIRS, AMSU, and MHS are multi-channel sounders of different frequency ranges. AIRS is the
5th largest EOS data set at 48GB/day. AMSU and MHS are small in comparison producing less
then 0.2GB/day each.

GLAS is the next largest EOS data set at just under 10GB/day.

SSM/I is similar to MIMR. MIMR produces just under 6GB/day of data.

Nimbus-7 and CZCS are similar to SeaWiFS or EOS-Color. CZCS is a 6 band color scanner and
has similar compression properties as the 7 multispectral band Landsat images (see above
discussion).  SeaWiFS II is a small data set at 2GB/day and will have typical compression ratios
and compressibility of MODIS, MISR, and ASTER.

With the exception of HIRDLS which produces 1.3GB/day, the remaining EOS instruments
produce less then 1GB/day each and are insignificant in size compared to the above data sets.

5.3 Recommendations for Prototyping and Research

5.3.1 Landsat and AVHRR Level 1B Study

AVHRR and Landsat TM Level 1B data could be studied to determine which lossless
compression method exceeds in compressing it. These results may theoretically be the same as the
future data sets of MODIS, MISR, and ASTER, and Landsat 7 level 1B data.

A sampling of AVHRR and Landsat TM full resolution granules from the surface of planet would
be needed for the study. The Comparative Lossless Compression Package (CRUSH) developed
by Hughes STX for Goddard could be used to compare LZW, WNC, Adaptive WNC, two
windowed versions of LZ, Rice, and lossless JPEG. The CRUSH algorithm will provide
processing rate and compression ratio for all the above mentioned lossless techniques.

The study would hopefully conclude whether or not it is justifiable to use a different algorithm then
LZW (UNIX Compress) for level 1B data for the largest data sets.

5.3.2 Derived Products (Level 2 through Level 4)

Very few assumptions can be made about derived products compressibility. It will not be possible
to ever conclude that one compression algorithm is always better then another algorithm. It may
even be impossible to predict that one algorithm is consistently better then another algorithm by
volume. It cannot even be assumed that derived products will consistently be image data or
multidimensional integer data.

A cost analysis is necessary to determine if it is justifiable to use more then one compression
method. That is does the possible compression savings justify the complexity of implementing
more then one algorithm.
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5.3.3 Browse and Quick Look Data

More information about browse and quick look requirements need to be gathered before a
recommendation for future study of lossy techniques can be made.

5.3.4 Test  COTS compression chips

Several COTS compression chips are available today. These chips could be acquired and tested for
speed and effectiveness against the software algorithms they implement.

5.3.5 Other Research Ideas:

Ask DAACs using compression to log their compression statistics at time of compression and
archival to get more meaning full results on average compression of the LZW (UNIX compress)
algorithm. That is gather global coverage statistics.

Small study on the effectiveness of the DCLZ algorithm with a limited dictionary size as available
on COTS chips today. Compare these results with the above log of the LZ1 algorithm.

Explore band ordering and adaptive techniques to exploit the similarities of the spectral bands that
is common in many ECS data sets. (See Tate, 1994)

Compare hardware versus software compression. How much CPU demand do these
compression/decompression algorithms use? Can clients and the PGS tolerate the cost to
decompress?

Continue exploring COTS compression chips applicability and effectiveness.

What effect does sending compressed data across the CSMS have? If the CSMS also uses
compression will the CSMS automatically recognize compressed data and not attempt to compress
any further?

Research the applicability of JPEG lossy compression for the production of browse products.
Attempt to determine if it is justifiable to use a different lossy algorithm for the production of
browse products.
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6. Early Conclusions

LZW (UNIX Compress) will probably average 2:1 compression for all EOS data maybe less.
Despite complaints that UNIX compress does not yield a high compression ratio compared to
other algorithms, a GSFC concluded that there was no single algorithm that always worked better
on a granule by granule basis. However when considering an entire data set instead of individual
granules some algorithms may perform better. If multiple algorithms are employed, an average
data compression ratio of 3:1 may be obtainable for EOS data.
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Appendix A:
Abbreviations and Acronyms

ECS EOSDIS Core System
EDOS EOS Data and Operations System
EOS Earth Observing System
EOSDIS EOS Data and Information System
DAAC Distributed Active Archive Center
DADS Data Archive and Distribution System (ECS)
DCLZ Data Compression Lempel-Ziv algorithm (Dictionary Based)
DCT Discrete Cosine Transform
DPCM Differential pulse code modulation
FDCT Forward DCT
HDF Hierarchical Data Format
IDCT Inverse DCT
KLT Karhunen-Loève Transform
JPEG Joint Photographics Experts Group
LMV Laplacian Multivariate
LZ Lempel-Ziv
LZ1 Lempel-Ziv 1977 algorithm
LZ2 Lempel-Ziv 1988 algorithm
LZW Lempel-Ziv-Welch
MRF Markov random field
MVQ Model Based Vector Quantization
NCSA National Center for Supercomputing Applications
RLE Run Length Encoding
SAR Synthetic Aperture Radar
SNR Signal to Noise Ratio
V0 Version 0 of ECS
VQ Vector Quantization
WNC Witten-Neal-Clearly
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